2. L. A. Kozdoba and P. G. Krukovskii, Methods for the Solution of Inverse Heat-Transfer Problems [in Russian], Kiev (1982).
3. Yu. M. Matsevityi and A. V. Multanovskii, Identification in Heat-Conduction Problems [in Russian], Kiev (1982).
4. V. M. Vigak, Optimal Control of Transient Temperature Regimes [in Russian], Kiev (1979).
5. V. M. Vigak, Dokl. Akad. Nauk Ukr.SSR, Ser. A, No. 3, 32-35 (1983).
6. A. N. Tikhonov and V. Ya. Arsenin, Solutions of Il1-Posed Problems, Halsted Press, New York (1977).
7. M. L. Rasulov, Application of the Contour Integral Method to the Solution of Problems for Second-Order Parabolic Systems [in Russian], Moscow (1975).
8. G. Doetsch; Guide to the Application of Laplace and Z-transforms, 2nd Ed., Van Nostrand Reinhold, New York (1971).
9. A. V. Lykov, Theory of Heat Conduction [in Russian], Moscow (1967).
10. A. A. Samarskii, Theory of Difference Schemes [in Russian], Moscow (1983).

V. L. RVACHEV'S QUASI-GREEN'S FUNCTIONS METHOD

IN THE THEORY OF HEAT CONDUCTION

M. D. Martynenko and E. A. Gusak

UDC 517.947.43

We present a generalization of V. L. Rvachev's method of quasi-Green's functions in connection with the solution of mixed problems for the heat-conduction equation in noncylindrical domains.

Let Ω be a domain in a space of $n+1$ dimensions ($n=2,3$), the boundary $\partial \Omega\left(S_{t_{0}}+S_{t^{\prime}}+\right.$ S_{B}) of which is represented by the normalized equation $\omega(P, t)=0$, where P is a point with the coordinates $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. We assume that $\omega(P, t)$ is twice continuously differentiable with respect to the spatial coordinates and once continuously differentiable with respect to t; moreover, $\omega(P, t)>0$ for all (P, t) $\mathcal{R} / \partial \Omega$ [1].

In the domain Ω we consider the problem of finding a solution of the heat-conduction equation

$$
\begin{equation*}
L u=f\left(L=\Delta-\frac{1}{a^{2}} \frac{\partial}{\partial t}\right) \tag{1}
\end{equation*}
$$

satisfying the conditions

$$
\begin{align*}
\left.u\right|_{s_{t}} & =0 \tag{2}\\
\left.u\right|_{t=t_{0}} & =0 \tag{3}
\end{align*}
$$

It was shown in [2] that an arbitrary solution of the heat-conduction equation (1), twice continuously differentiable with respect to (x_{1}, \ldots, x_{n}) and continuously differentiable with respect to t, can be represented in the following form:

$$
\begin{gather*}
u(P, t)=-a^{2} \int_{t_{0}}^{t} \int_{S_{t^{\prime}}}^{(n-1)} \int\left(v \frac{\partial u}{\partial n^{\prime}}-u \frac{\partial v}{\partial n^{\prime}}\right) d S^{\prime} d t^{\prime}+ \tag{4}\\
+\int \underset{a_{t_{0}}}{(n)} \int u v d \tau^{\prime}+\int \underset{S_{\mathrm{B}}}{(n-1)} \int u v \cos \left(n^{*}, \mathbf{t}\right) d S^{\prime}-a^{2} \int_{t_{0}}^{t} \int_{G_{t^{\prime}}}^{(n)} \int v L u d \tau^{\prime} d t^{\prime}
\end{gather*}
$$

where

$$
\begin{equation*}
v=\delta\left(P, P^{\prime}, t, t^{\prime}\right)=\left(\frac{1}{2 a \sqrt{\pi\left(t-t^{\prime}\right)}}\right)^{n} \exp \left(-\frac{r^{2}}{4 a^{2}\left(t-t^{\prime}\right)}\right) \tag{5}
\end{equation*}
$$

V. I. Lenin Belorussian State University, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 51, No. 4, pp. 673-676, October, 1986. Original article submitted July 30, 1985.
δ is the fundamental solution of the heat-conduction equation.
Green's second formula for Eq. (1) may be written

$$
\begin{align*}
& +\int \stackrel{(n-1)}{\cdots} \underset{s_{\mathrm{B}}}{\underset{\sim}{2}} \frac{u g}{a^{2}} \cos \left(n^{*}, \mathbf{t}\right) d S^{\prime}-\int \stackrel{(n)}{a_{t}} \cdot \int \frac{u g}{a^{2}} d \tau^{\prime}, \tag{6}
\end{align*}
$$

where $M=\Delta+1 / a^{2} \partial / \partial t$ is the operator adjoint to the heat-conduction operator L.
It follows from Eqs. (4) and (6) that

$$
\begin{aligned}
& u(P, t)=-a^{2} \int_{t_{0}}^{t} \int_{G_{t^{\prime}}}^{(n)} \int(g L u-u M g) d \tau^{\prime} d t^{\prime}- \\
& -a^{2} \int_{t_{0}}^{t} \int_{\stackrel{(n-1)}{\cdots}}^{S_{t}} \int\left(g \frac{\partial u}{\partial n^{\prime}}-u \frac{\partial g}{\partial n^{\prime}}\right) d S^{\prime} d t^{\prime}+\int \stackrel{(n)}{\overbrace{t_{0}}} \int u g d \tau^{\prime}-\int \stackrel{(n)}{\cdots} \int u g d \tau^{\prime}+ \\
& +\iint_{\underset{s_{\mathrm{B}}}{(n-1)}}^{\cdots} u g \cos \left(n^{*}, \mathbf{t}\right) d S^{\prime}-a^{2} \int_{t_{0}}^{t} \int \underset{s_{t^{\prime}}}{(n-1)} \int\left(\delta \frac{\partial u}{\partial n^{\prime}}-u \frac{\partial \delta}{\partial n^{\prime}}\right) d S^{\prime} d t^{\prime}+ \\
& +\int \stackrel{(n)}{\cdots} \int_{G_{t_{0}}}^{\cdots} u \delta d \tau^{\prime}+\int \underset{S_{\bar{E}}}{(n-1)} \int u \delta \cos \left(n^{*}, \mathbf{t}\right) d S^{\prime}-a^{2} \int_{t_{0}}^{t} \int_{G_{t^{\prime}}}^{\cdots} \int^{(n)} \delta L u d \tau^{\prime} d t^{\prime}-
\end{aligned}
$$

We rewrite the last relation in the form

$$
\begin{gather*}
u(P, t)=-a^{2} \int_{i_{0}}^{t} \int_{G_{t^{\prime}}}^{(n)} \cdot \int(g+\delta) L u d \tau^{\prime} d t^{\prime}+a^{2} \int_{i_{0}}^{t} \int_{G_{t}}^{(n)} \iint u M g d \tau^{\prime} d t^{\prime}+\int \underset{G_{t_{\mathrm{t}}}}{(n)} \int u(g+\delta) d \tau^{\prime}- \\
-a^{2} \int_{i_{0}}^{t} \int_{0}^{(n-1)} \cdots\left[(g+\delta) \frac{\partial u}{\partial n^{\prime}}-u \frac{\partial}{\partial n^{\prime}}(g+\delta)\right] d S^{\prime} d t^{\prime}+\int_{S_{\mathrm{B}}}^{(n-1)} \int u(g+\delta) \cos \left(n^{*}, \mathbf{t}\right) d S^{\prime}-\int_{G_{t}}^{(n)} \cdot \int u g d S^{\prime} . \tag{7}
\end{gather*}
$$

As g we choose the function

$$
\begin{equation*}
g\left(P ; P^{\prime}, t, t^{\prime}\right)=\left(\frac{1}{2 a \sqrt{\pi\left(t-t^{\prime}\right)}}\right)^{n} \exp \left(-\frac{r^{2}+4 \omega(P, t) \omega\left(P^{\prime}, t^{\prime}\right)}{4 a^{2}\left(t-t^{\prime}\right)}\right) \tag{8}
\end{equation*}
$$

By virtue of the relations (5) and (8) we have

$$
\begin{equation*}
g+\left.\delta\right|_{t=t^{\prime}, P \neq P^{\prime}}=0, g+\left.\delta\right|_{s_{\mathrm{B}}}=0 \tag{9}
\end{equation*}
$$

We then obtain from the relation (7), taking into account the relations (1)-(3) and (9),

$$
\begin{equation*}
u(P, t)=-a^{2} \int_{t_{0}}^{t} \int_{\substack{(n) \\ G_{t},}}^{\substack{ \\\hline}}(g+\delta) f d \tau^{\prime} d t^{\prime}+a^{2} \int_{i_{0}}^{t} \int_{G_{t}}^{(n)} \underset{\substack{\prime}}{ } \int u\left(P^{\prime}, t^{\prime}\right) K\left(P, P^{\prime}, t, t^{\prime}\right) d \tau^{\prime} d t^{\prime} \tag{10}
\end{equation*}
$$

where

$$
\begin{gathered}
K\left(P, P^{\prime}, t, t^{\prime}\right)=\frac{\omega(P, t)}{a^{2}\left(t-t^{\prime}\right)\left(2 a \sqrt{\left.\pi\left(t-t^{\prime}\right)\right)^{n}}\right.} \exp \left(-\frac{r^{2}+4 \omega(P, t) \omega\left(P^{\prime}, t^{\prime}\right)}{4 a^{2}\left(t-t^{\prime}\right)}\right) \times \\
\times\left[\frac{\omega(P, t)\left(\nabla \omega\left(P^{\prime}, t^{\prime}\right)\right)^{2}-\mathbf{r} \cdot \nabla \omega(P, t)-\omega\left(P^{\prime}, t^{\prime}\right)}{a^{2}\left(t-t^{\prime}\right)}-M \omega\left(P^{\prime}, t^{\prime}\right)\right]
\end{gathered}
$$

Ordinary considerations [1] readily serve to establish the continuity of $K\left(P, P^{\prime}, t\right.$, $\left.t^{\prime}\right)$ in the domain Ω; Eq. (10), therefore, represents a Fredholm integral equation of the second kind for determining the solution of the initial problem (1)-(3). Established numerical methods [3] may be employed to solve Eq, (10).

This version of V. L. Rvachev's quasi-Green's function method may also be immediately generalized to the case of nonhomogeneous initial and boundary conditions.

NOTATION

G, a finite domain of a three- or two-dimensional space; S, the piecewise-smooth boundary of the domain G; $G_{t},\left(G_{t_{0}}\right)$, the spatial domain for $t^{\prime}=$ const ($t_{0}=$ const) with the boundary $S_{t^{\prime}}\left(S_{t_{0}}\right) ; t$, time; $d S^{\prime}$, area element of the boundary $G ; d \tau^{\prime}$, volume element of the domain $G ; n^{{ }^{\prime}}=n^{\prime}\left(P^{\prime}, t^{\prime}\right)$, inner normal to the boundary $S_{t^{\prime}}$ at the point $P^{\prime} ; r=$ $\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}$ in the three-dimensional case, $r=\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}}$ in the two-dimensional case; n^{*}, inner normal to the boundary of the domain Ω; t, unit vector along the Ot axis.

LITERATURE CITED

1. V. L. Rvachev, The Theory of R-Functions and Some of Its Applications [in Russian], Kiev (1982).
2. G. N. Polozhii, Equations of Mathematical Physics [in Russian], Moscow (1964).
3. A. F. Verlan' and V. S. Sizikov, Methods for the Solution of Integral Equations with Computer Programs [in Russian], Kiev (1978).
